A custom-built workflow that identifies high-fit companies, enriches contacts, and generates tailored outreach at scale.
# Python script querying Arbeitnow API
import requests
import pandas as pd
import re
KEYWORDS = [
"urban sports", "wellpass", "qualitrain",
"gympass", "mental health support", "employee wellbeing",
"betriebliche gesundheitsförderung", "health budget"
]
API_URL = "https://arbeitnow.com/api/job-board-api"
def count_keywords(text, keywords):
text = text.lower() if text else ""
return {kw: len(re.findall(re.escape(kw), text)) for kw in keywords}
# Fetch jobs and filter by keyword matches
resp = requests.get(API_URL)
jobs = resp.json().get("data", [])
# Export matched companies to CSV
df.to_csv("keyword_matches.csv", index=False)
# Import CSV into Apollo
# Append verified HR contacts
# Export enriched lead list
apollo.import_csv("keyword_matches.csv")
apollo.enrich_contacts(job_titles=["HR Manager", "People Ops"])
enriched_leads = apollo.export()
// n8n workflow: loop through each lead
for (const lead of enrichedLeads) {
// Send job-ad context to ChatGPT for email drafting
const email = await chatgpt.generateEmail({
company: lead.company,
jobContext: lead.matchedKeywords,
contactName: lead.hrContact,
});
// Push final email to Apollo via API
await apollo.pushEmail(lead.id, email);
}
// Apollo sends emails automatically on schedule
Let's design an automated prospecting system that finds high-fit leads and generates personalized outreach at scale.
Let's connect →